
Universal Journal of Computer Science and Engineering Technology

1 (1), 64-72, Oct. 2010.

© 2010 UniCSE, ISSN: 2219-2158

64

Corresponding Author: Ahmed S. Ghiduk, Department of Computer Science, Taif University, Saudi Arabia

A New Software Data-Flow Testing Approach via

Ant Colony Algorithms

Ahmed S. Ghiduk

Department of Computer Science

College of Computers and Information Systems

Taif University, Taif, Saudi Arabia

asaghiduk@tu.edu.sa

Abstract—Search-based optimization techniques (e.g., hill

climbing, simulated annealing, and genetic algorithms) have been

applied to a wide variety of software engineering activities

including cost estimation, next release problem, and test

generation. Several search based test generation techniques have

been developed. These techniques had focused on finding suites of

test data to satisfy a number of control-flow or data-flow testing

criteria. Genetic algorithms have been the most widely employed

search-based optimization technique in software testing issues.

Recently, there are many novel search-based optimization

techniques have been developed such as Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO), Artificial Immune

System (AIS), and Bees Colony Optimization. ACO and AIS have

been employed only in the area of control-flow testing of the

programs. This paper aims at employing the ACO algorithms in

the issue of software data-flow testing. The paper presents an ant

colony optimization based approach for generating set of optimal

paths to cover all definition-use associations (du-pairs) in the

program under test. Then, this approach uses the ant colony

optimization to generate suite of test-data for satisfying the

generated set of paths. In addition, the paper introduces a case

study to illustrate our approach.

Keywords- data-flow testing; path-cover generation, test-data

generation; ant colony optimization algorithms

I. INTRODUCTION

There are many critical activities associated with software
testing such as 1) finding path-cover to cover a certain testing
criterion 2) test-data generation to satisfy the path cover, 3) test
execution by using the test data and the software under test and
4) evaluation of test results. A number of test-data generation
techniques have been developed.

Random test-data generation techniques select inputs at
random until useful inputs are found [1, 2]. This technique may
fail to find test data to satisfy the requirements because
information about the test requirements is not incorporated into
the generation process.

Symbolic test-data generation techniques assign symbolic
values to variables to create algebraic expressions for the
constraints in the program, and use a constraints solver to find a
solution for these expressions that satisfies a test requirement
[3, 4]. Symbolic execution cannot determine which symbolic
value of the potential values will be used for array as B[c] or
pointer. Furthermore, symbolic execution cannot find floating

point inputs because the current constraint solvers cannot solve
floating point constraints.

Dynamic test-data generation techniques collect
information during the execution of the program to determine
which test cases come closest to satisfying the requirement.
Then, test inputs are incrementally modified until one of them
satisfies the requirement [5, 6]. Dynamic techniques can stall
when they encounter local minima because they depend on
local search techniques such as gradient descent.

Search-based optimization techniques (e.g., hill climbing,
simulated annealing, and genetic algorithms) have been applied
to a wide variety of software engineering activities including
cost estimation, next release problem, and test-data generation
[7].

Several search based test-data generation techniques have
been developed [8, 9, 10, 11, 12, 13]. Some of these techniques
had focused on finding test data to satisfy a wide range of
control-flow testing criteria (e.g., [8, 10, 11]) and the other
techniques had concentrated on generating test-data for
covering a number of data-flow testing criteria [12, 13, 9].
Genetic algorithms have been the most widely employed
search-based optimization technique in software testing area
[7].

Recently, there are some novel search-based optimizations
techniques have been developed such as Ant Colony
Optimization (ACO) [14, 15], Particle Swarm Optimization
(PSO) [16], Bees Colony Optimization [17], and Artificial
Immune System (AIS) [18]. There are few efforts for applying
some of these novel search-based optimization techniques in
the area of software testing [18, 19, 20, 21, 22, 23, 24, 25, 26].

Ant Colony Optimization (ACO) has been applied in the
area of software testing in 2003 [19, 20]. Boerner and Gutjahr
[19] described an approach involving ACO and a Markov
Software Usage model for deriving a set of test paths for a
software system, and McMinn and Holcombe [20] reported on
the application of ACO as a supplementary optimization stage
for finding sequences of transitional statements in generating
test data for evolutionary testing. H. Li and C. P. Lam [21, 22]
proposed an Ant Colony Optimization approach to test data
generation for the state-based software testing. Bouchachia
[18] incorporated immune operators in genetic algorithm to
generate software test data for condition coverage. Ayari et al.

UniCSE 1 (1), 64 -72, 2010

65

[23] proposed an approach based on ant colony to reduce the
cost of test data generation in the context of mutation testing.
Srivastava and Rai [24] proposed an ant colony optimization
based approach to test sequence generation for control-flow
based software testing. K. Li et al. [25] presents a model of
generating test data based on an improved ant colony
optimization and path coverage criteria. P. R. Srivastava et al.
[26] presents a simple and novel algorithm with the help of an
ant colony optimization for the optimal path identification by
using the basic property and behavior of the ants.

However, data-flow testing is important because it
augments control-flow testing criteria and concentrates on how
a variable is defined and used in the program, which could lead
to more efficient and targeted test suites. The results of using
ant colony optimization algorithms in software testing which
obtained so far are preliminary and none of the reported results
directly addresses the problem of test-data generation or path-
cover finding for data-flow based software testing.

This paper aims at employing the Ant Colony Optimization
algorithms in the issue of software data-flow testing. To our
knowledge, this paper is the first work using ACO in the issue
of data-flow testing. The paper presents an ant colony
optimization based technique for generating set of optimal
paths to cover all definition-use associations (def-use or du-
pairs) in the program under test. Then, this technique uses also
the ant colony optimization algorithms to generate suite of test-
data for satisfying the generated set of paths. In addition, the
paper introduces a case study to illustrate our approach.

The rest of the paper is organized as follows. Section 2
gives some basic concepts and definitions. Section 3 introduces
two ant colony algorithms for using with data-flow testing. One
algorithm generates set of paths for covering all def-use pairs in
the software under test (SUT) and the other algorithm finds set
of test data to satisfy this set of paths. Section 4 presents a
technique for implementing the two algorithms in data-flow
testing. Section 5 presents a case study to illustrate our
approach. Section 6 introduces conclusion and future work.

II. BACKGROUND

This section gives set of basic concepts and definitions
which will help in understanding this work.

A. Ant Colony Optimization

Ant Colony Optimization (ACO) is a population-based,
general search technique for the solution of difficult
combinatorial problems, which is inspired by the pheromone
trail laying behavior of real ant colonies. The first ACO
technique is known as Ant System [14] and it was applied to
the traveling salesman problem. Since then, many variants of
this technique have been produced. Dorigo and Blum in [27]
surveyed the theory of ant colony optimization. In ACO, a set
of software agents called artificial ants search for good
solutions to a given optimization problem. To apply ACO, the
optimization problem is transformed into the problem of
finding the best path on a weighted graph. The artificial ants
(hereafter ants) incrementally build solutions by moving on the
graph. The solution construction process is stochastic and is
biased by a pheromone model, that is, a set of parameters

associated with graph components (either nodes or edges)
whose values are modified at runtime by the ants. Figure 1
shows a generic ant colony algorithm.

The procedure to solve any optimization problem using

ACO is:

1) Represent the problem in the form of sets of

components and transitions or by means of a weighted graph

that is traveled by the ants to build solutions.

2) Appropriately define the meaning of the pheromone

trail, i.e., the type of decision they bias. This is a crucial step

in the implementation of an ACO algorithm. A good definition

of the pheromone trails is not a trivial task and it typically

requires insight into the problem being solved.

3) Appropriately define the heuristic preference to each

decision that an ant has to take while constructing a solution,

i.e., define the heuristic information associated to each

component or transition. Notice that heuristic information is

crucial for good performance if local search algorithms are not

available or cannot be applied.

4) If possible, implement an efficient local search

algorithm for the problem under consideration, because the

results of many ACO applications to NP-hard combinatorial

optimization problems show that the best performance is

achieved when coupling ACO with local optimizers.

5) Choose a specific ACO algorithm and apply it to the

problem being solved, taking the previous aspects into

consideration.

6) Tune the parameters of the ACO algorithm. A good

starting point for parameter tuning is to use parameter settings

that were found to be good when applying the ACO algorithm

to similar problems or to a variety of other problems.
It should be clear that the above steps can only give a very

rough guide to the implementation of ACO algorithms. In
addition, the implementation is often an iterative process,
where with some further insight into the problem and the
behavior of the algorithm; some initially taken choices need to
be revised. Finally, we want to insist on the fact that probably
the most important of these steps are the first four, because a
poor choice at this stage typically can not be made up with pure
parameter fine-tuning.

An ACO algorithm iteratively performs a loop containing

the following two basic procedures:

1) A procedure for specifying how the ants

construct/modify solutions of the problem to be solved;

2) A procedure to update the pheromone trails.
The construction/modification of a solution is performed in

a probabilistic way. The probability of adding a new item to

Step 1: Initialization

– Initialize the pheromone trail

Step 2: Iteration

– For each Ant Repeat

– Solution construction using the current pheromone trail

– Evaluate the solution constructed
– Update the pheromone trail

– Until stopping criteria

 Figure 1. A generic ant colony algorithm

UniCSE 1 (1), 64 -72, 2010

66

the current partial solution is given by a function that depends
on a problem-dependent heuristic and on the amount of
pheromone deposited by ants on the trail in the past. The
updates in the pheromone trail are implemented as a function
that depends on the rate of pheromone evaporation and on the
quality of the produced solution.

B. Data-flow analysis and testing

Typically, in structural testing strategies a program‘s
structure is analyzed on the program flow-graph, i.e., an
annotated directed graph which represents graphically the
information needed to select the test cases.

A control-flow graph (CFG) is a directed graph G=(V,E),
with two distinguished nodes— a unique entry n0 and a unique
exit nk. V is a set of nodes, where each node represents a
statement, and E is a set of directed edges, where a directed
edge e = (n,m) is an ordered pair of adjacent nodes, called tail
and head of e, respectively. Figure 2(a) gives an example
program Program1 and figure 2(b) gives its control-flow graph.

A path p in a CFG is a finite sequence of nodes connected

by edges e.g., 1→2→3→5 and 2→4.

The key question addressed in software testing is how to
select test cases with the aim of uncovering as many defects as
possible.

There are many activities normally associated with software
testing such as 1) path-cover finding to cover a certain testing
criterion 2) test data generation to satisfy the path cover, 3) test
execution involving the use of test data and the software under
test (SUT) and 4) evaluation of test results.

Coverage criteria require that a set of entities of the
program control-flow graph to be covered when the tests are
executed. A set of complete paths (path cover) satisfy a

criterion if it covers the set of entities associated with that
criterion. Depending on the criterion selected, the entities to be
covered may be derived from the program control flow or form
the program data flow. Frankl and Weyuker in [28, 29] defined
a family of popular control flow and data flow test coverage
criteria.

Data-flow testing considers the possible interactions
between definitions and uses of variables.

The occurrences of a variable in a program can be
associated with the following events:

 A statement storing a value in a memory location of a
variable creates a definition (def) of the variable.

 A statement drawing a value from the memory location
of a variable is a use of the currently active definition
of the variable. In particular, when the variable appears
on the right-hand side of an assignment statement it is
called a computational use (c-use), when the variable
appears in the predicate of the conditional statement it
is called a predicate use (p-use) [29].

 A statement kills the currently active definition of a
variable when its value becomes unbound.

A path is def-clear path with respect to a variable if it
contains no new definition of that variable.

Data flow analysis determines the defs of every variable in
the program and the uses that might be affected by these defs
(i.e. the du-pairs). Such data flow relationships can be
represented by the following two sets:

 dcu(i), the set of all variable defs for which there are
def-clear paths to their cuses at node i; and

 dpu(i, j), the set of all variable defs for which there are
def-clear paths to their p-uses at edge (i,j) [30].

Using information concerning the location of variable defs
and uses, together with the ‗basic static reach algorithm‘ [31],
the sets dcu(i) and dpu(i, j) can be determined [30]. Tables 1
and 2 show samples of the du-pairs of Program1.

TABLE V. LIST OF DCU-PAIRS FOR PROGRAM1.

dcu variable def-node use-node killing nodes

1 a 1 3 None

2 c 8 9 3, 4

TABLE VI. LIST OF DPU-PAIRS OF PROGRAM1.

dpu variable def-node use-edge killing nodes

1 a 1 (2,3) None

2 n 5 (6,7) 10

III. APPLYING ACO TO DATA-FLOW BASED TESTING

In order to apply ACO for generating test data or path cover
or any software testing activity, the following number of issues
need to be addressed:

1) Problem representation: transformation of the testing

problem into a searching model (e.g., control-flow graph);

#include <iostream.h>

void main()

{

 int a, b, c, n;

1 cin >> a >> b;

2 if(a < 6)

 {

3 c = a;

 }

 else

 {

4 c = b;

 }

5 n = c;

6 while(n < 8)

 {

7 if(b > c)

 {

8 c = 2;

 }

 else

 {

9 n = n + c + 7;

 }

10 n = n + 1;

 }

11 cout << a << b << n;

 }

 (a) (b)

T

T

4

5

6

exit

entry

1

2

3

T F

9

10

8

F
7

11

F

Figure 2. An example program (a), and its control-flow graph (b)

UniCSE 1 (1), 64 -72, 2010

67

2) A heuristic measure for measuring the ―goodness‖ of

paths through the graph (e.g., how far is it from covering the

target);

3) A mechanism for creating possible solutions efficiently

and a suitable criterion to stop solution generation;

4) A suitable method for updating the pheromone; and

5) A transition rule for determining the probability of an

ant traversing from one node in the graph to the next.
In the following subsections, we introduce two ant colony

algorithms for using with data-flow testing. The first algorithm
generates set of paths for covering all def-use pairs in the SUT
and the second algorithm finds set of test data to satisfy this set
of paths.

A. Path-Cover generation

The first aim of the paper is driving a path-cover for
covering all def-use pairs in the SUT using an ant colony
optimization algorithm. In this section we will modify and
adapt the ant colony optimization algorithm which was
suggested by Srivastava et al. in [26] to be correct and
appropriate for data-flow testing.

1) Problem Representation
The purpose of the ant colony optimization algorithm is

finding for each feasible def-use pair at least one def-clear
path in CFG graph of the software under test. Therefore, we
will use the control-flow graph as the searching model. In
addition, ants will start at the def node and travel to the use
node to find the def-clear path from the def node to the use
node. Then, the algorithm will randomly select path from the
start node to the def node and another path from the use node
to the end node to construct a complete path.

For example, the control-flow graph in Figure 2(b) is the
searching model for example program in Figure 2(a). In
addition for the def-use (c, 8, 9), ants will start their search at
node 8 and travel to the destination node 9.

2) Path Selection
Path selection depends upon the probability of this path.

The path with high probability has high chances to be selected
by the ant. The probability value of path depends upon:

a) Feasibility of path (Fij), which shows that there is

direct connection between the nodes and there is no killing

nodes on this path;

b) Pheromone trail value (τij), which helps other ants to

make decision in the future (i.,e, guides the ants to the good

path), and

c) Heuristic information (ηij) of the path, which

indicates the visibility of a path for an ant at the current node.

In some cases there are more then one feasible path has the
asme probability vale then by the following policies the
algorithm selects one of these feasible paths.

P.1) An ant will select the next position according to the

value of visited status parameter (Vs). If current node v1 is

direct connected to the node say v2 and v2 not visited yet by

the ant and is not killing node, then ant will select v2 as the

next position that means the path (v1→v2) is traversed.

P.2) If current node v1 is direct connected to more than one

node say v2 and v3 and both of them are not visited yet by

the ant and are not killing node, then ant will select the

nearest one to the use node as the next position that means if

v3 is closer than v2 from the use node then path (v1→v3) is

traversed.

P.3) If there are many nodes have the same properties then

the ant will select any feasible path randomly.

P.4) The algorithm will stop if selection is not possible that

means the current def-use pair is infeasible.

P.5) For loop the node will select two times at maximum.

P.6) An ant selects use node as the next node, means ant will

select path from current node to use node.

P.7) The algorithm will randomly select path from the start

node to the def node and another path from the use node to

the end node to construct a complete path.

3) Information Updating
In the proposed algorithm ant has ability to collect the

knowledge of all feasible paths from its current position. An
approach for feasibility check of the paths from current node is
used. This approach is defined in feasibility set of path (Fij).
The ant also has four other facts about path:

a) Pheromone level on path (τij),

b) Heuristic information for the paths (ηij),

c) Visited nodes with the help of visited status (Vs), and

d) Probability level L.

After selection of a particular path ant will update the
pheromone level as well as heuristic value. Pheromone level is
increased according to last pheromone level and heuristic
information but heuristic information is updated only on the
basis of previous heuristic information.

Suppose that an ant t at node „i‟ and another node „j‟ which
is directly connected to „i‟, it means there is a path between

the nodes „i‟ and „j‟ (i.e., i→j). In the graph this path

associated with five values Fij(t), τij(t), ηij(t), Vs(t) and Lij(t)
where t shows that values associate with ant t. The description
of these attribute is given below [12]:

1) Feasible path set: F = {Fij (t)} represents the direct

connection with the current node „i‟ to the neighboring node

„j‟. Direct connection shows that the nodes which are adjacent

to the current node „i‟, i.e. a direct edge exist in between the

current node „i‟ and the chosen node „j‟.

 Fij =1 means that path between the node „i‟ and „j‟ is
feasible and node „j‟ is not a killing node.

 Fij=0 means the path between the node „i‟ and node „j‟
is not feasible or node „j‟ is a killing node for the
current def-use.

2) Pheromone trace set: τ = τij (t) represents the

pheromone level on the feasible path (i→j) from current node

„i‟ to next node „j‟. The pheromone level is updated after the

UniCSE 1 (1), 64 -72, 2010

68

particular path traversed. This pheromone helps other ants to

make decision in future.

3) Heuristic set: η = ηij (t) indicates the visibility of a path

for an ant at current node „i‟ to node „j‟.

4) Visited status set: Vs shows information about all the

nodes which are already traversed by the ant t. For any node

„i‟:

 Whereas Vs (i) =1 indicates that node „i‟ is already
visited by the ant t.

 Vs (i) =0 shows that node „i‟ is not visited yet by the
ant t.

5) Probability set: Selection of path depends upon

probabilistic value of path, because it is inspired by the ant

behavior. Probability value of the path depends upon the

feasibility of path Fij(t), pheromone value τij(t) and heuristic

information ηij(t) of path for ant t. There are two more

parameter α and β which used to calculate the probability of a

path. These parameters α and β control the desirability versus

visibility. α and β are associated with pheromone and heuristic

value of the paths respectively.
The proposed ant colony algorithm helps to get not only

knowledge of present node but also all feasible paths from
current node to next node and historical knowledge of already
traversed paths and nodes by the ant.

B. Test-data generation

The second aim of this paper is generating a set of test data
to cover all def-use pairs of the SUT. In this section we will
introduce an adaptation for the ant colony optimization
algorithm which was suggested by K. Li et al. in [25] to be
suitable to data-flow testing.

1) Problem Representation

The first problem is how to represent the problem in a
model which is traveled by the ants to build solutions. The
problem can represent in ordered and circular graph [23] or in
hierarchical model [25]. In this paper, we augment the
hierarchical model with a start node and we use it to represent
the problem. The hierarchical model is created by using the
input domain of program. Suppose that the input set of
program Prog is A={x1, x2 , x3…….xk}. Assume that xi has an
input domain Di, i  {1, 2, 3…k}. Each input domain Di is
divided into sub-domains Di1, Di2…Din. Finally, a hierarchical
model is built like Figure 3.

The links between layer and layer are complete in this
model. By searching the model, we could find the combination
between set n in layer i and set m in layer j. The data generated
from the sets n and m will have a higher possibility to satisfy
the selected path. According to the analysis of these
combinations of layers, it is not difficult to obtain the
distribution of the data that satisfies the selected path.

2) Path Selection

After constructing the representation graph, this part will
introduce the main process for selecting the test data. At first
putting a certain number of ants at the start node of the model,
then the ant selects a branch to move until getting to the end
node. According to the number of each node record in each
layer, we can use the data generation functions to get the
corresponding data in the corresponding interval. Then we use
these data to drive the tested program to run, calculate the
executed path and compare it with the def-clear path which
will influence the release of pheromone. The pheromone can
be updated according to the updating rules.

3) Information Updating

a) The Rules of Pheromone Update

In this approach, modified ant density model is used to
update pheromone. The original ant density model is as
follows:


ij passesant if

otherwise 0
)1,(

Q
k

ij tt

In the initial density model for any ant k, Q is a constant,
that is, the increment of pheromone is a fixed value. The new
Q defined in this paper is the number of common nodes
between the executed path and the def-clear path of the current
def-use pair.

The formula of updating pheromone is:

ijijij tnt  )()1()(

b) The Rules of Next node Selection

Because of the lack of pheromone information in the initial
search, ant colony algorithm might easily fall into local
optimization. The paper proposes such a strategy, that is, at the
early stage of searching, letting the ant choose the path that
has the smallest pheromone and ignore the impact of
pheromone. In short, we call it the ―choose the poorest‖
strategy. After several iterations, the algorithm abandons this
strategy, turning to determine the selection of path which has
the most pheromone. The aim of this strategy is to allow ants
to explore more paths at the early stage of searching in order
to avoid searching partial paths and prevent the algorithm
from falling into local optimization. In this way, the new rules
for next node selection (i.e., state transition) are:

D11 D12 D13 D1n

D21 D22 D23 D2n

entry

Dk1 Dk2 Dk3 Dkn

exit
Figure 3. The searching model diagram

UniCSE 1 (1), 64 -72, 2010

69

when m <= tempnum

next_node(i)=min(τij)

/* next_node(i) returns next node which connects with i*/

/* min(τij) return node j that connects with node i and path ij has

the least pheromone */

m++;

when tempnum < m < maxnum

next_node(i)=max(τij)

/* max(τij) return node j that connects with node i and path ij has

the most pheromone */

m++;

/*tempnum denotes the iterations times which uses the “choose the

poorest” strategy. maxnum denotes the total iterations times of the

algorithm. m denotes the loop counter.*/

In the next section, we present an ACO approach using the
above information to automatically generate path cover and test
data from the control-flow graph for data-flow based software
testing.

IV. OUR PROPOSED APPROACH

In this section we describe our proposed approach for data-
flow testing of C++ programs. This approach based upon the
ant colony optimization algorithms in section III to solve the
problem of deriving a path cover for the def-use associations of
the program under test and generating a set of test data that
satisfies this path cover. Figure 4 shows the overall diagram of
our proposed technique.

Our proposed technique performs the following tasks:

1) Analysis and reformatting of source code.

2) Generating set of program entities to be covered (i.e.,

all def-use pairs).

3) Generating set of paths to cover the all def-use pairs

using ant colony algorithm in section III (A).

4) Generating set of test data using ant colony algorithm in

section III (B) to satisfy the set of paths.
The technique performs these tasks in three stages. We

give a detailed description of these three stages of the
technique in the following subsections.

A. Analysis Module

The analysis and reformatting module has been built to
perform the following tasks:

1) Read the program under test, testing criterion and input

domains of the variables.

2) Classify program statements and reformats some of

them to facilitate the construction of the program control-flow

graph.

3) Construct the control-flow graph of the reformatted

version of the program.

4) Construct the test data searching model in Figure 3 by

using the input domains of the input variables.

5) Produce the set of entities to be covered that satisfies

the def-use associations criterion.

6) Instrument the program under test to trace and calculate

the executed path.

7) Pass the searching model and the input domains of the

variables for the test data generation module.

B. Path-Cover Generation Module

The path-cover generation module uses the following
algorithm to generate set of paths to cover all the def-use
associations in the software under test. The algorithm easily
traverses all the nodes and derives a set of paths which is
required for all def-use coverage criterion.

Algorithm for ant t:

Step 0: for each def-use pairs do steps from 1 through 3

0.1 Select DU: select uncovered yet def-use pair to be

covered.

0.2 Set start and end node: set the start node to be the def

node and the end node to be the use node.

Step 1: Initialize all parameter

1.1 Set heuristic Value (η): for every branch (i.e., branch is

a connection between two nodes) in the CFG initialize

heuristic value η =2.

1.2 Set pheromone level (τ): for every branch in the CFG

initialize pheromone value τ =1.

1.3 Set visited status (Vs): for every node in the CFG Vs=0

(initially no node is visited by the ant).

1.4 Set Probability level (L): for each branch in the CFG

initialize probability L=0.

1.5 Set α=1, and β= 1, here α and β are the parameter

which controls the desirability versus visibility i.e.

desirability means if an ant wants to traverse any

particular path on the basis of pheromone value and

visibility means the solution which ant has on the basis

of prior experience regarding the path. These

parameters are associated with pheromone and heuristic

values of the paths respectively.

1.6 Set count: count = cc cyclometic complexity describes

the different possible paths in CFG. The technique

automatically calculates the maximum number of

possible paths depending upon the value of number of

cc value.

1.7. Set key: key = end _node, it is a variable which store

the value of end node.

Step 2: Repetition the following steps while count > 0

2. While (count>0)

Evaluation at node „i‟

2.1. Initialize: start=i , sum=0, visit=0.

visit is a variable which used to discard a redundant

path and sum used to calculate the value of strength of

the path, which later used to prioritize the paths.

Figure 4: The block diagram of the proposed technique

Outputs

Inputs

User

Outputs

Inputs

Inputs

Test-Data

Generation Module

Analysis Module

Path Cover

Generation Module

Outputs

Inputs

Software under test (SUT)

Testing Criterion (C)

Input Domains

Classify and Reformat

Entities to be covered

(Ec)

Control Flow Graph

(CFG)

Test data searching model

Set of Paths (P)

Test data searching model

UniCSE 1 (1), 64 -72, 2010

70

2.2. Update the track: Update the visited status for the

current node „i‟

i.e. if (Vs[i] ==0) then Vs[i] =1 And visit =visit+1

/*increase the value of variable visit*/.

2.3 Evaluate Feasible Set: Means to determine F(t) for the

current node „i‟, this procedure evaluate the entire

possible path from the current node „i‟ to the all the

neighboring nodes with the help of CFG diagram. If

there is no feasible path then go to step 3.

2.4 Sense the trace: To sense the trace, evaluate the

probability from the current node „i‟ to all non-zero

connections in the F(t), as discussed earlier ant‘s

behavior is probabilistic. For every non-zero element

belongs to feasible set F(t), we calculate probability

with the help of below formula.

 








k

ikik

ijij

ijL

1

))()((

)()(









For every k belongs to feasible set F(t).

2.5. Move to next node: Using the below rule move to next

node

R1: Select paths (i→j) with maximum probability (Lij).

R2: If two or more paths (e.g., i→j and i→k) have

equal probability level like (Lij = Pik) then select path

according to below rule:

R2.1. Compare each entry in the feasible set with the

end_node

If (feasible set entry==end _node) then select end_

node as the next node otherwise follow R2.2.

R2.2. Select that path which have next node not

visited yet (i.e., Visited status Vs =0). If two or more

nodes have same visited status i.e. Vs[j] =Vs[k] then

follow R2.3.

R2.3. if Vs[j] =Vs[k] then select randomly

2.6. Update the parameter:

2.6.1 Update Pheromone: Pheromone is updated for

path (i→j) according to the following rule

(τij)= (τij)α
 + (ηij)–β

2.6.2 Update Heuristic: ηij = 2*(ηij)

2.7. Calculate Strength: It shows the values associated

with each path

sum = sum + τij

strength [count] = sum.

start = next_node.

2.8. if (start! = end_node) then go to step 2.3 else if

(visit==0) then discard the path it is the redundant path

otherwise add new path.

2.9. Update count: decrement count by one each time.

count =count-1.

Step 3: Complete the generated path

3.1 Randomly select a path from the beginning of the

control-flow graph to the def node.

3.2 Randomly select a path from the use node to end

node of the control-flow graph.

3.3 Select another uncovered def-use pair and go to step

0.

End //end of algorithm
Variable count represents the cyclomatic complexity of a

method, as count becomes zero; it shows all the decision
nodes traversed. Algorithm will stop automatically in two
condition, firstly if there is no feasible def-use pairs and
secondly if the all feasible def-use pairs are covered at least
once.

C. Test Data Generation Module

The test-data generation module uses the following
algorithm to generate set of test data to satisfy the set of paths
in the path cover. The algorithm easily traverses all the nodes
and derives the required set of data.

Initializing Steps:

1. Build the searching model as in Figure 3.

2. Select one def-clear path from the path cover and

mark it.

3. Put ants at start node of the searching model.

Moving Ants Steps:

4. Ant moves and records the number of node.

5. if (ant not get to the end node) goto step 4.

6. Record the path

7. Generate the corresponding data.

8. Execute the program under test using the generated

data and record the execution path.

9. Compute the similarity between the execution path

and the def-clear path.

10. Update pheromone.

11. if (execution path not cover the def-clear path) goto

step 3.

12. record the test data

13. if (there is unmarked def-clear path in the path cover)

goto step 2

14. Output the set of test data and the set of covered def-

clear paths.

15. End // the algorithm

Algorithm will stop automatically if there are no

unmarked def-clear paths in the path cover.

V. CASE STUDY

We have developed a prototype tool called PCTDACO
using the proposed algorithms to automatically derive a path
cover for all def-use pairs in the program under test and
generate a set of test data for this path cover. The proposed
prototype is implemented by using C++ based on the above
algorithms. This tool is fully automatic because it takes only
as inputs the program under test, input domains of the input
variables of the program under test. Tool gives output analysis
in file format. The tool also produces a file contains the def-
use pairs, the path which covers it, and test data which satisfy
this path. Tester can see the internal values generated by ant
like heuristic, pheromone values, probability calculation and
describe selection of best path according to algorithm.

PCTDACO tool automatically calculates the total number
of nodes.

For generating the path cover, an ant must start from the
def node and it can generate a def-clear path. Def-clear path

UniCSE 1 (1), 64 -72, 2010

71

depends upon the feasibility of path from the current node to
other nodes and accordingly it will take decision for further
proceeding and in the end it gives the optimal test path in CFG
diagram of software under test. Here optimal means all
decision nodes traversed at least once.

Table 3 shows the different def-clear paths which are
associated the set of def-use pairs of the example program in
Figure 2.

Def-use pairs Def-clear path

(a,1,3) 1→2→3

(c,8,9) 8→10→6→7→9

(a,1,[2,3]) 1→2→3

(n,5,[6,7]) 5→6→7

Table 4 shows the different complete paths which are
covered the of def-use pairs (c,8,9).

Def-use pairs Complete paths

(c,8,9)

entry→1→2→3→5→6→7→
8→10→6→7→9→10→6→11→exit

entry→1→2→4→5→6→7→

8→10→6→7→9→10→6→11→exit

Table 5 shows a complete path cover which is covered the

set of def-use pairs of the example program in Figure 2.

Def-use pairs Complete paths

(a,1,3)
entry→1→2→3→5→6→7→

8→10→6→7→9→10→6→11→exit

(c,8,9)
entry→1→2→4→5→6→7→

8→10→6→7→9→10→6→11→exit

(a,1,[2,3]) entry→1→2→3→5→6→11→exit

(n,5,[6,7]) entry→1→2→4→5→6→7→9→10→6→11→exit

Our approach arranges the set of complete paths for the
same def-use pairs in a priority depending upon the strength of
the path (i.e., according to the length of each path) such that
the short path has a higher priority than the long one. For
example, for the def-use (a,1,[2,3]) the complete path
entry→1→2→3→5→6→11→exit has a higher priority than
the complete path entry→1→2→3→5→6→7→8→10
→6→7→9→10→6→11→exit.

The brief description about how the def-clear path
8→10→6→7→9 is generated for the def-use pairs (c,8,9) in
the CFG of the example program Program1 is given in the
below.

The tool selects the def-use pairs (c,8,9) and initializes all
parameter according to step 1, as it is clear from the algorithm
of path cover generation. The tool put an „t‟ ant at def node
(node 8), for def node tool which generate the feasible set
F(def) = {10} and ant move to next node 6 as there is no
decision node from def node to node 6,ant keep on moving
and update all values as per algorithm. At node 6 feasible set
i.e. F[6] ={7,11} with equal probability and visited status L(6-
7) = L(6-11) and V[7] = V[11] = 0, so according to R3 ant
select a node randomly from nodes 7 and 11. Suppose the
algorithm selects node 7 as the next node then update
parameter along with calculation of Strength.

At node 7 feasible set i.e. F[7] ={8,9} with probability
level L(path7-9) > L(path 7-8) so according to R2.1 ant select

node „9‟ as the next node then update parameter along with
calculation of Strength. The current ant traveled the path
8→10→6→7→9 and reached the end node which is the use
node of the current def-use (node 9). Therefore, the tool will
save the current def-use (i.e., (c,8,9)) and its def-clear path
(i.e., 8→10→6→7→9). Then, the tool randomly generates
any path from the entry node of the CFG to the def-node (node
8) and another path from the use node (node 9) to the exit
node of the CFG. The tool can generate the paths
entry→1→2→3→5→6→7 and 10→ 6→11→exit. Then, the
complete path which cover the def-use (c,8,9) is
entry→1→2→3→5→6→7→8→10→6→7→9→10→6→
11→exit.

The tool repeats the above policy with all def-use pairs to
complete the path cover.

For generating the test data, an ant must start from the
entry node of the searching model in Figure 3 and it can
generate test datum.

In our case study, we set the range of each input variable
of the example program Program 1 (variables a and b) is
1~100 and divide each range into four smaller ranges: 1~25,
26~50, 51~75, 76~100. We select the path of
entry→1→2→3→5→6→7→8→10→6→7→9→10→6→
11→exit as the target path. The model we built for this
experiment is as follows:

The tool starts the by putting n ants at the entry node of the

searching model. Suppose ant „t‟ randomly selects the first
node (domain 1 to 25) at the first layer. Then, the ant will
select the second node (domain 26-50) in the second layer.
Then the ant will get the exit node. Suppose the corresponding
data are 6 and 30. Then the tool executes the program under
test using the data and record the executed path. The executed
path is entry→1→2→3→5→6→7→
8→10→6→7→8→10→6→7→10→6→11→exit. Then, the
tool updates the pheromone and repeats the above strategy
until getting the required test data which execute a path covers
the selected path. The tool repeats the same strategy with each
path in the path cover.

VI. CONCLUSION AND FUTURE WORK

To our knowledge, this paper is the first work using ACO in
the issue of data-flow testing. This paper aims at employing the
Ant Colony Optimization algorithms in the issue of software
data-flow testing. The paper presented an ant colony
optimization based approach for generating set of optimal paths
to cover all definition-use associations (du-pairs) in the
program under test. This approach uses also the ant colony

TABLE III. A SET OF DEF-CLEAR PATHS

TABLE IV. A SET OF COMPLETE PATH COVER

TABLE V. A COMPLETE PATH COVER

Figure 5. The searching model for example program

1-25 26-50 51-75 76-100

1-25

26-50

51-75

76-100

entry

exit

UniCSE 1 (1), 64 -72, 2010

72

optimization algorithms to generate suite of test-data for
satisfying the generated set of paths. The ant colony algorithms
are adopted to search the CFG and a model built on the
program input domain in order to get the path cover and the test
data that satisfies the selected path.

Our future work will focus on estimates the efficiency of
ant colony optimization algorithms against genetic algorithms
in this area. In addition, we will concentrate on solving the
problem of constructing the searching model for the program
with input variable of boolean and character type. In addition,
how to revise the model to be applied to object-oriented
programs?

REFERENCES

[1] H. D. Mills, M. D. Dyer, and R. C. Linger, ―Cleanroom software
engineering,‖ IEEE Software, vol. 4, pp. 19-25, 1987.

[2] J. M. Voas, L. Morell, and K. W. Miller, ―Predicting where faults can
hide from testing,‖ IEEE, vol. 8, pp. 41-48, 1991.

[3] W. E. Howden, ―Symbolic testing and the DISSECT symbolic
evaluation system,‖ IEEE Transactions on Software Engineering, vol. 3,
no. 4, 266-278, 1977.

[4] T. E. Lindquist, and J. R. Jenkins, ―Test-case generation with IOGen,
IEEE Software,‖ vol. 5, no. 1, pp. 72-79, 1988.

[5] R. Ferguson and B. Korel, ―The chaining approach for software test data
generation,‖ ACM TOSEM, vol. 5, pp. 63-86, 1996.

[6] B. Korel, ―Automated software test data generation,‖ IEEE Trans. on
Software Engineering, vol. 16, pp. 870-879, 1990.

[7] M. Harman, "The current state and future of search based software
engineering," Proc. of the International Conference on Future of
Software Engineering (FOSE‘07), May 2007, pp. 342-357. IEEE Press.

[8] R. P. Pargas, M. J. Harrold, and R. R. Peck, ―Test data generation using
genetic algorithms, Journal of Software Testing,‖ Verifications, and
Reliability, vol. 9, pp. 263-282, 1999.

[9] A. S. Ghiduk, M. J. Harrold, M. R. Girgis, ―Using genetic algorithms to
aid test-data generation for data flow coverage,‖ Proc. of 14th Asia-
Pacific Software Engineering Conference (APSEC 07), Dec. 2007, pp.
41-48. IEEE Press.

[10] C. C. Michael, G. E. McGraw, M. A. Schatz, ―Generating software test
data by evolution,‖ IEEE Transactions on Software Engineering, vol.27,
no.12, pp. 1085-1110, 2001.

[11] J. Wegener, A. Baresel, H. Sthamer, ―Evolutionary test environment for
automatic structural testing,‖ Journal of Information and Software
Technology, vol. 43, pp. 841-854, 2001.

[12] L. Bottaci, ―A genetic algorithm fitness function for mutation testing,‖
Seminal: Software Engineering Using Metaheuristic Innovative
Algorithms, 2001.

[13] M. R. Girgis, ―Automatic test data generation for data flow testing using
a genetic algorithm,‖ Journal of Universal computer Science, vol. 11, no.
5, pp. 898-915, 2005.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, ―Ant System: Optimization by
a Colony of Cooperating Agents,‖ IEEE Transactions on Systems, Man,
and Cybernetics-Part B Cybernetics, vol. 26, no. 1, pp. 29-41, 1996.

[15] C. Blum, ―Ant colony optimization: introduction and hybridizations‖
Proc. of 7th International Conference on Hybrid Intelligent Systems
(HIS‘07), Sept. 2007, pp. 24-29. IEEE Press.

[16] X. Zhang, H. Meng, and L. Jiao, ―Intelligent particle swarm optimization
in multiobjective optimization,‖ Proc. of the 2005 IEEE Congress on
Evolutionary Computation, Vo. 1, pp. 714-719. IEEE Press.

[17] D.T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and M. Zaidi
―The bees algorithm – A novel tool for complex optimisation problems‖
Proc. of Innovative Production Machines and Systems Conference
(IPROMS‘06), 2006, pp.454-461.

[18] A. Bouchachia, ―An immune genetic algorithm for software test data
generation‖ Proc. of 7th International Conference on Hybrid Intelligent
Systems (HIS‘07), Sept. 2007, pp. 84-89. IEEE Press.

[19] Doerner, K., Gutjahr, W. J., ―Extracting Test Sequences from a Markov
Software Usage Model by ACO‖, LNCS, Vol. 2724, pp. 2465-2476,
Springer Verlag, 2003.

[20] McMinn, P., Holcombe, M., ―The State Problem for Evolutionary
Testing‖, Proc. GECCO 2003, LNCS Vol. 2724, pp. 2488-2500,
Springer Verlag, 2003.

[21] H. Li and C. P. Lam, ―Software test data generation using ant colony
optimization‖ World Academy of Science, Engineering and Technology
vol.1, 2005, pp.1-4.

[22] H. Li and C. Peng LAM , ―An Ant Colony Optimization Approach to
Test Sequence Generation for State based Software Testing‖,
Proceedings of the Fifth International Conference on Quality Software
(QSIC‘05), pp 255 – 264,2005.

[23] K. Ayari, S. Bouktif, and G. Antoniol, ―Automatic mutation test input
data generation via ant colony,‖ Proc. of International Conference on
Genetic and Evolutionary Computation Conference (GECCO‘07), July
2007, pp 1074-1081. ACM Press.

[24] P. R. Srivastava, and V. K. Rai ―An ant colony optimization approach to
test sequence generation for control flow based software testing‖ Proc.
of 3rd International Conference on Information Systems, Technology
and Management (ICISTM‘09), March 2009, pp. 345-346. Springer
Berlin Heidelberg

[25] K. Li, Z. Zhang, and W. Liu, ―Automatic Test Data Generation Based
On Ant Colony Optimization,‖ Proc. of Fifth International Conference
on Natural Computationn 2009, pp. 216-219. IEEE Press.

[26] P. R. Srivastava, K. Baby, and G Raghurama, ―An Approach of Optimal
Path Generation using Ant Colony Optimization,‖ Proc. of TENCON
2009, pp.1-6. IEEE Press.

[27] M. Dorigo and C. Blum ―Ant colony optimization theory: A survey‖,
Theoretical Computer Science, 344(2-3), pp. 243-278, 2005.

[28] P. G. Frankl, and E. J. Weyuker, ―An Applicable Family of Data Flow
Testing Criteria,‖ IEEE Transactions on Software Engineering, vol. 14,
1988, no. 10, pp. 1483-1498.

[29] S. Rapps and E.J. Weyuker, ―Selecting software test data using data flow
information,‖ IEEE Transactions on Software Engineering, vol.11, no. 4,
pp. 367-375, 1985.

[30] M.R. Girgis and M.R. Woodward, ―An integrated system for program
testing using weak mutation and data flow analysis,‖ Proceedings of
Eighth International Conference on Software Engineering, IEEE
Computer Society, pp. 313-319, 1985.

[31] F. E. Allen and J. Cocke, ―A program data flow analysis procedure,‖
Communication of the ACM, 19 (3), 137-147, 1976.

Ahmed S. Ghiduk is an assistant professor at Beni-Suef University, Egypt.
He received the BSc degree from Cairo University, Egypt, in 1994, the MSc
degree from Minia University, Egypt, in 2001, and a Ph.D. from Beni-Suef
University, Egypt in joint with College of Computing, Georgia Institute of
Technology, USA, in 2007. His research interests include software
engineering especially search-based software testing, genetic algorithms, and
ant colony. Currently, Ahmed S. Ghiduk is an assistant professor at College of
Computers and Information Systems, Taif University, Saudi Arabia. One can
connect Ahmed S. Ghiduk on asaghiduk@yahoo.com or gamil.com.

